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For every normalized measure a on the unit circle T let t,,(n) be the maximal
integer t such that the quadrature formula of Chebyshev type

1 nf p(x, y)da = - L P(xk' yd
n k ~ I

holds for some subset {(XI' YI)'" .(xn ' V,,)} ofT and for all polynomials p(x, y) of
deg p ~ t. If w is the Lebesgue measure then tJn) = n - I. Moreover, t.,(n) ~
n - I for every a. Under the Kolmogorov-Szego condition on a we prove
that a = w if t,,(n) = n - 1 for a subsequence of n = 1,2,3,.... CC' 1994 Academic

Press, Inc.

(1)

Let (T be a normalized positive regular Borel measure on the unit circle
T = {z : Iz I = I} in the complex plane C. Given a positive integer t, a
subset A = {z k : x k + iyk}~' C T is called a cr-averaging set of degree t if

1 11

lP(x, y) dcr = - I: p(x k , yd
T n k~ 1

(2)1 s sst

for all polynomials p( x, y) in the real variables x, y (z = x + iy), deg P s
t. Formula (1) is a Chebyshev type quadrature formula of degree t with
the nodes Zk' 1 s k s n.

A general result [6] provides the existence of cr-averaging sets for fixed t
and all big n, n ~ net). For the Lebesgue measure w the averaging sets of
degree t are called t-designs. In particular, every regular n-gon is a
(n - I)-design [1].

The condition (1) can be reduced to an equivalent complex form.

LEMMA 1. A set A = {Zk}~ is a cr-averaging set of degree tiff

1 11

fzs dcr = - 1: Zk'
n k~ 1

where / == / T for short.
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Proof Equation (1) with deg p ::;; t = (2) with s::;; t since ZS =

(x + iy)S is a polynomial in x, y and its degree is s. Conversely, let (2)
with 1 ::;; s ::;; t be given. Then the same equalities are valid for Is I ::;; t
since a is real and normalized. It remains to note that p( x, y) = q( z, z),
where q is a polynomial of the same degree, and it is a linear combination
of ZS for Izl = 1, lsi::;; deg q. I

COROLLARY 2. If A = {Zk}~ is a a-averaging set of degree t then

/s I ::;; t.

Remark 3. In the Lebesgue case, a = w, all these integrals with s*-o
are zero, so A is a t-design iff

1 ::;; s ::;; t. (3)

It yields for t = n - 1 that A is a (n - I)-design iff A is a regular n-gon
(cf. [1]).

Let us denote by t(T(n) the maximal degree of a-averaging sets of
cardinality n. In particular,

since the system (3) with t = n has only the trivial solution z I =

0, ... , Zn = o. On the other hand, well-known arguments show that if
card(supp a) > n then

t(T(n) S; n - 1. (4)

Indeed, let A = {Zk}~ and let P = PA be the measure concentrated on the
set A and uniformly distributed on it, P({Zk}) = lin for 1 S; k S; n. If now

then

1 nJZS da = - L Zk = JZS dp,
n k~ I

lsi::;; n



136 YU. I. LYUBICH

for all polynomials P of degree ~ n. For

n

P(z)=O(Z-Zk)
k~l

we obtain

(5)

which contradicts our assumption on u.
From now on we assume that the support of u is infinite, therefore (4)

is valid. Our main result is the following

THEOREM 4. Let the Kolmogorov-Szego condition be fulfilled, i.e.,

JIn u'dw > - 00 (6)

where u ' is the derivative of the absolutely continuous part of the measure u
with respect to w. If for arbitrarily large n there exist u-averaging sets
An = {Znl'···' znn} of degree n - 1 then the measure u is Lebesgue, i.e.,
u = w.

In other words,

if the measure u under the condition (6) is non-Lebesgue and n is big
enough. In this sense the only Lebesgue measure is extremal with respect
to degrees of averaging sets.

We obtain Theorem 4 as an immediate consequence of two lemmas
proved below.

LEMMA 5. Suppose that there exists a subsequence S of sets An =
{Znk}Z~1 C T such that

lim (Jzs du - ~ t Z~k) = 0,
nES n k~l

Then u = w iff

s = 1,2,3, .... (7)

I

n jl1n
lim 0 (z - Z nd = 1
nES k~ I

uniformly on every disk Izi ~ r < 1.

(8)
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Note that Lemma 5 does not require the Kolmogorov-Szego condition
for (T.

Proof Let us define the generating function

in the open disk Iwl < 1. Setting Pn = PAn we also consider the functions

1 D~(w)

- -;; Dn(w) ,

where
n

Dn(w) = n (w - Znk)'
k= I

Obviously,

where

Because of (7) limn En,s = 0 for s = 0,1,2,. , .. In addition, lEn) S 2. If
1'/ > 0 and r < 1 are fixed, we can choose an integer m such that
2rm(l - r)-I < h. There exists an integer N such that 2:7'=(/ lEn) < h
for n > N. Therefore,

I£: En,sWsl < 7J
s=o

for n > N if Iwl sr. This means that the right side of (9) tends to zero as
n ~ 00 uniformly in the disk Iwl s r, Thus,

I
1 D~( w) I

lim sup G,,(w) + - --) = O.
nESlwl:5r nDn(w

(10)

Now let us note that 0" = w iff the Fourier coefficients 'Ys = fZs dO" are
zero except 'Yo. Therefore, 0" = w iff G,,( w) == O. Further, it is equivalent
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. 11 D~( w) Ilim sup ---- = 0
nES Iwl9 n Dn(w)

(11 )

because of (10).
At this point we can use the formula

n ( 1 wf'(z) )
\!If(w)1 = exp Re -;; II f(z) dz

which is valid for every analytic function f in the unit disk having no zeros
in it and such that If(O) 1 = 1. For this reason (11) = (8) uniformly on
every disk Iz 1.::;; r < 1 and, conversely, (8) implies that

1 fW D;,( z)
lim Re - --- dz = 0
nES n 0 Dn(z)

uniformly as well. The classical Schwarz formula yields

1

1 fWD~(Z) Ilim sup - --- dz = 0
nESlwI9 n 0 Dn(z)

and then (11) follows by the Cauchy formula for the derivative. I

The next lemma deals with general quadrature formulas, not only of
Chebyshev type. Every such formula for the given measure a has a form

fZSda= fz s d7, 0.::;; s .::;; d, ( 12)

where l' is a normalized positive measure with a finite support on the unit
circle. Similarly (4) we have d .::;; n

T
- 1, where n

T
= card(supp 1'). If d is

the maximal possible for a given 1', d = d
T

, then it is called the degree of l'

(or the quadrature formula (12».
For every n there exists a quadrature formula (12) with a measure l'

such that n
T

= n, d
T

= n - 1. Basically, this follows from some general
results concerning the trigonometric moment problem [5, Chap. 4] but one
can establish this more directly [4, Sect. 7].

Now let us set

n

where {z), ... , z,,} = supp 1'.
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LEMMA 6. Let a measure a- satisfy the Kolmogorov-Szego condition.
Then

inf min IDAz)/ > 0,
T Izl~r

sup max/DT(z)/ < 00,

T Izl~r

where 0 < r < 1, 7" runs ouer the set of finitely supported measures such that
d

T
= n

T
- 1.

Proof It follows from

j ZS da- = j ZS dT,

that

Let

O:::;s:::;n-l

( 13)

n

DT(n) = zn + E aiz n- i .
j~l

Then

n-]

jDr(z)z-nda-= 1 + Laijz-ida-+anjz-"da­
j ~ 1

and

n

jDr(Z)da-= jZ"da-+ L:,aJz"-ida-,
j~1

In the corresponding relations for the measure 7" the integrals containing
Dr vanish, i.e.,

n-] n-l

0= 1 + L:, aJz-f d7" + a"jz-" d7" = 1 + L: aijz-i da- + a"fz-n d7"
f~1 f~l

and

n

L aJz"-i dT =
j~l

n

L aJz"-i da-.
j~ I
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Therefore,

and, finally,
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(14)

It is convenient to think of formula (4) in terms of the Hilbert space L~

provided with the scalar product

(U,u) = ju(z)U(Z)dif.

Namely, (DT, zn) = an(DT, 1). But DT(z) = zn + R(z) + an' where R is
a polynomial of degree :-:; n - 1, R(O) = O. Hence R is orthogonal to D

T

by (13). So

As a result

(15)

The formulas (5) show that (D
T

, 1) *- 0, (D
T

, zn) *- O. These inequali­
ties and equalities (13) mean that D

T
is the so-called para-orthogonal

polynomial of degree n with respect to the measure if. In addition, D
T

is
monic. Every such polynomial is of the form

(16)

where lOTI = 1, ct>'Lis the monic orthogonal polynomial (== Szego polyno­
mial), ct>:(z) = znct>nO/z), the bar means the conjugation of coefficients
[4, Sect. 6].

Since all roots of ct>n( z) lie inside the unit disk [3, Sect. 2.3] we have
Ict>/O) I < 1.

Obviously, for every fixed nand n
T

= n
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On the other hand,

infminIDT(z)/ ~ tmin minltPn(z) + etP:(z)/ > 0
T Izl:s;r 101= 1 Izl:s;r

141

since all roots of para-orthonormal polynomials lie on the unit circle [4,
Theorem 6.2]. To finish the proof we note that the Kolmogorov-Szeg6
condition implies the asymptotic Szeg6 formula

lim max ItPn ( z) I = 0,
n-<>oc Izl:s;r

lim maxltP:(z) - l(z)1 = 0,
n---+ oc Izl,;r

where 1 is an analytic function in the disk Iz I < 1 and I( z) has no roots
in it [3, Sect. 3.4]. I

It is obvious that Lemmas 5 and 6 imply Theorem 4.

Remark 7. There exists a different way to prove Lemma 6 using the
Kolmogorov-Szeg6 criterion of the completeness for the system {zS}7 in
L~. The author thanks the referee who suggested to use asymptotic Szego
formulas for a shorter proof.

Remark 8. The parameter (JT runs over the whole unit circle [4].

In conclusion we show that the Kolmogorov-Szeg6 condition is essential
in Lemma 6.

Every difference equation

with 0 *- Ian I < 1, n = 0,1,2, . .. defines a unique infinitely supported
measure (J" such that

and the solution of (17) under the initial conditions Yo = I, YI = 1 - aoz
is just the sequence of polynomials tP:(z) (see [7; 2, Chap. 8]. Therefore,
the Kolmogorov-Szego condition is violated if I: Ian 1

2
= 00.

EXAMPLE 9. Following [2] let an = a, 0 *- lal < l. Then (17) takes the
form

640179/1-10

Y n +2 - (1 + Z)Yn+1 + z(1 - lal 2 )Yn = o. ( 18)
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Therefore,
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A~ - A'2
-(l+a)z ,

AI - A2

(19)

where AI' A2 are roots of the characteristic equation

A2
- (1 + Z)A + z(l - lal 2

) = O.

Obviously, A1,2 = to + z ± Vtl( z) ), where

tl(z) = 1 - 2(1 - 21a1 2 )z + Z2,

If x is real then tl(x) > 0. In this case one can choose the positive branch
of Vtl(x). Then AI(X) > IAix)1 for x> -1 and it follows from (19)
that, asymptotically,

A(x)-(l+a)x
ep*(x) "" I An(X)

n Vtl(x) 1
(20)

(21 )

as n -+ 00. For x> 0 we can insert X-I instead of x. Since x 2tl(X- I
) =

tl(x) and XAI(X- I
) = AI(X) we obtain from (20)

AI(X) - (1 +a)
epA x) "" !AI:: A~ ( x) .

Vtl( x)

Note also that by (8) all ep:(z) (n ~ 1) have the same leading coeffi­
cient, namely (-a).

Now we denote by Tn the measure T with n
T

= n, d
T

= n - 1 and

which corresponds to 0T = 1 in (16), From (20) and (21) we obtain

ZA1(x) - (1 + a)(1 + x)
D (x) "" An(x)

Tn (1 _ a),jtl(x) I'

The coefficient of this asymptotic relation is not zero if x "* 1. Since
AI(X) > 1 for x> 0 we obtain DTn(x) -+ 00 as n -+ oc and x> 0, x"* 1,
moreover

lim VDTJ x) = AI ( x) > 1.
n ---+ oc'

Therefore, the conclusion of Lemma 6 is not valid now.
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