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For every normalized measure ¢ on the unit circle T let ¢,(n) be the maximal
integer ¢ such that the quadrature formula of Chebyshev type

1 n
fp(X-)’)d0= ; Z p(xe.¥y)
k=1

holds for some subset {(x,, y;),...(x,, y,)} of T and for all polynomials p(x, y) of
deg p < t. If w is the Lebesgue measure then f {n) = n — 1. Moreover, f,(n) <
n — 1 for every o. Under the Kolmogorov-Szegd condition on o we prove
that ¢ = w if #,(n) = n — | for a subsequence of n = 1,2,3,... . © 1994 Academic

Press, Inc.

Let ¢ be a normalized positive regular Borel measure on the unit circle
T ={z : |z] = 1} in the complex plane C. Given a positive integer ¢, a
subset A = {z,: x, + iy}t C T is called a o-averaging set of degree t if

1 =
fpteyydo = & plxive) (1)

for all polynomials p(x, y) in the real variables x, y (z =x + iy),deg p <
t. Formula (1) is a Chebyshev type quadrature formula of degree ¢ with
the nodes z,, 1 <k < n.

A general result [6] provides the existence of g-averaging sets for fixed ¢
and all big n, n > n(t). For the Lebesgue measure w the averaging sets of
degree t are called t-designs. In particular, every regular n-gon is a
(n — 1)-design [1].

The condition (1) can be reduced to an equivalent complex form.

LeMMmAa 1. A set A = {z,}} is a o-averaging set of degree t iff
1 n
[zfd(f:—zz;, l<s<t (2)
n k=1

where [ = [ for short.
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Proof. Equation (1) with degp <t =>(2) with s <1t since z°=
(x +iy)* is a polynomial in x, y and its degree is s. Conversely, let (2)
with 1 <s <t be given. Then the same equalities are valid for [s| < ¢
since o is real and normalized. It remains to note that p(x,y) = q(z, 7),
where g is a polynomial of the same degree, and it is a linear combination
of z* for [z] =1, |s] <degq. |

CoroLLARY 2. If A = (z,}] is a o-averaging set of degree t then

fzsd0'=%

™M=

zy, Is| <.
k=1

Remark 3. In the Lebesgue case, o = w, all these integrals with s # 0
are zero, s¢ A is a t-design iff

Y z;=0, l1l<s<t. (3)

It yields for ¢t = n — 1 that A4 is a (n — 1)-design iff A4 is a regular n-gon
(cf. [1D).

Let us denote by ¢,(n) the maximal degree of o-averaging sets of
cardinality ». In particular,

t,(n)y=n-1
since the system (3) with ¢ =n has only the trivial solution z, =

0,...,2z, =0. On the other hand, well-known arguments show that if
card(supp ¢) > n then

t,(n) <n-1 4)

Indeed, let A = {z,}] and let p = p, be the measure concentrated on the
set A and uniformly distributed on it, p({z,})) = 1 /n for 1 < k < n. If now

fz d(f———Z:zk—fz dp, Is| <n
then

JIP(2)* da = [1P(2)]" dp
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for all polynomials P of degree < n. For

P(Z)=,£II(Z—Z/() (5)
we obtain
JIP(z)[ do =0

which contradicts our assumption on o.
From now on we assume that the support of o is infinite, therefore (4)
is valid. Our main result is the following

THEOREM 4. Let the Kolmogorov—-Szegd condition be fulfilled, i.e.,
fln gdow > —x (6)

where o' is the derivative of the absolutely continuous part of the measure o
with respect to w. If for arbitrarily large n there exist o-averaging sets
A, =1{z,,....2,,} of degree n — 1 then the measure o is Lebesgue, i.e.,
g = W,

In other words,

t,(n)y<n-1

if the measure o under the condition (6) is non-Lebesgue and n is big
enough. In this sense the only Lebesgue measure is extremal with respect
to degrees of averaging sets.

We obtain Theorem 4 as an immediate consequence of two lemmas
proved below.

LemMma 5. Suppose that there exists a subsequence S of sets A, =
{z,}¢_, © T such that

1n
’llléns(fz da—;kglznk)=0, s=1,2,3,.... (7)
Then o = w iff
n l/n
lim|[T(z-2z,)] =1 (8)
neS k=1

uniformly on every disk |z| <r < 1.
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Note that Lemma S does not require the Kolmogorov-Szegd condition
for o.

Proof. Let us define the generating function

do

Z—w

G, (w) = éowsfz“"d0'=f

in the open disk |w| < 1. Setting p, = p, we also consider the functions

11 _1D(w)
G = G = — —_—_—
(W) ni(W) n k§1 Zg — W nD (w)
where
Dn(w) = (W—Z”k).
k=1
Obviously,
D'(W)
G,(w) + —G(W)~G(W)‘Zes” (9)
D,(w) 5=
where
£, = fz_”l do - fz's" dp,.
Because of (7) lim, &, , = 0 for s = 0,1,2,... . In addition, |¢, ;| < 2. If

n>0 and r <1 are fixed, we can choose an integer m such that
2r™(1 — r)~' < 3n. There exists an integer N such that 7 !le, || < 1n
for n > N. Therefore,

for n > N if |w| < r. This means that the right side of (9) tends to zero as
n — o uniformly in the disk |w| < r. Thus,

D,(w)
n Dn(W)

lim sup
nes lwl<r

G, (w) + (10)

Now let us note that o = w iff the Fourier coeflicients y, = [z° do are
zero except y,. Therefore, o = w iff G (w) = 0. Further, it is equivalent
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to
1 D (w)
n D, (w)

-0 (11)

lim sup
nes w)<r

because of (10).
At this point we can use the formula

Vire) ‘exp(Re_f ff((zz)) )

which is valid for every analytic function f in the unit disk having no zeros
in it and such that |f(0)] = 1. For this reason (11) = (8) uniformly on
every disk |z| < r < 1 and, conversely, (8) implies that

D(z)
lim Re—
nes n’o D,,(z)

dz =10

uniformly as well. The classical Schwarz formula yields

wDI(Z)

nfo D,(2) 4| 77

lim sup

nES i<y

and then (11) follows by the Cauchy formula for the derivative. |

The next lemma deals with general quadrature formulas, not only of
Chebyshev type. Every such formula for the given measure o has a form

[zdo= [z2dr, 0<s<4, (12)

where 7 is a normalized positive measure with a finite support on the unit
circle. Similarly (4) we have d < n_— 1, where n_ = card(supp 7). If d is
the maximal possible for a given 7, d = d_, then it is called the degree of 7
(or the quadrature formula (12)).

For every n there exists a quadrature formula (12) with a measure
such that n. = n, d. = n — 1. Basically, this follows from some general
results concerning the trigonometric moment problem [5, Chap. 4] but one
can establish this more directly [4, Sect. 7].

Now let us set

DT(Z) = kI;[l(Z -Zk)’

where {z,,...,z,} = supp 7.
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LEMMA 6. Let a measure o satisfy the Kolmogorov-Szegd condition.
Then

inf min | D,(z)| > 0, sup max|D_(z)| < e,
[

T lzlsr r lzlsr

where 0 < r < 1, T runs over the set of finitely supported measures such that
d =n_-1

Proof. 1t follows from

fz‘d0=fz‘d-r, O0<s<n-—-1

that
[Di(z)z7de =0, 1s<j<n-1 (13)
Let
D(n)=z"+ ). a;z"7.
j=1

Then

n—1 ]

fD,(z)z‘"da= 1+ Y aj/z”da-k a,,fz‘"d(f

i=1

and

n
[D.(z)do = [zrdo+ ¥ o, [2"7 do.
j=1
In the corresponding relations for the measure 7 the integrals containing
D_ vanish, i.e.,
n—1 ) n—1 )
0=1+ ) aj/z"d1-+anfz‘"dr= 1+ Y a,fz"do-kanfz*"df
J=1 j=1
and

/z" dr = —é:lajfz"'jd'r = — iaj/z”_jdo'.

i=t
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Therefore,
jDT(z)z_'l do = a, /z‘" do + Y, ajfz"_ja'a'
j=1

and, finally,

fD,(z)z-"da=an[D,(z)da. (14)

It is convenient to think of formula (14) in terms of the Hilbert space L?
provided with the scalar product

(u,v) = [u(z)ﬁda.

Namely, (D_, z") = a,(D_,1). But D(z)=z" + R(z) + «,, where R is
a polynomial of degree < n — 1, R(0) = 0. Hence R is orthogonal to D,
by (13). So

ID.I? = (D,,D,) = (D,,z") + &,(D,,1).
As a result
D, =2Rea,(D,,1) =2Re(D,, z"). (15)

The formulas (15) show that (D_, 1) # 0, (D_, z") # 0. These inequali-
ties and equalities (13) mean that D, is the so-called para-orthogonal
polynomial of degree n with respect to the measure ¢. In addition, D, is
monic. Every such polynomial is of the form

®(z) +6,PF(2)

P T T e

(16)

where [6,| = 1, &, is the monic orthogonal polynomial (= Szegd polyno-
mial), &7(z) = z"®,(1/z), the bar means the conjugation of coeflicients
[4, Sect. 6].

Since all roots of @&,(z) lie inside the unit disk [3, Sect. 2.3] we have
|9, 0)] < 1.

Obviously, for every fixed n and n_=n

max (|B,(z)|+| P} (2)])

lz]<r

D <
sup max| D,(2)] T %0)]
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On the other hand,

inf min |D,(z)| = 4 min min |®,(z) + 8D} (z)| > 0
T lzl=r 18l=1 lzi<r

since all roots of para-orthonormal polynomials lie on the unit circle (4,
Theorem 6.2). To finish the proof we note that the Kolmogorov—-Szego
condition implies the asymptotic Szegd formula

lim max|®,(z)| =0, lim max|®¥(z) - f(z)| =0,
nox|zl<r

n-o|z|<r

where f is an analytic function in the disk |z] < 1 and f(z) has no roots
in it [3, Sect. 3.4]. |
It is obvious that Lemmas 5 and 6 imply Theorem 4.

Remark 7. There exists a different way to prove Lemma 6 using the

Sy

Kolmogorov-Szegd criterion of the completeness for the system {z°}] in
L?. The author thanks the referee who suggested to use asymptotic Szegd
formulas for a shorter proof.

Remark 8. The parameter 6, runs over the whole unit circle [4].

In conclusion we show that the Kolmogorov-Szego condition is essential
in Lemma 6.
Every difference equation

2
AVns2 — (an + an+lz)yn+l + an+lz(1 - 'an' )yn =0 (17)
with 0 # |la,| <1, n=0,1,2,... defines a unique infinitely supported
measure o such that

exp(fln o’dw) = T1(1~ la,,lz)

n=0
and the solution of (17) under the initial conditions y, = 1, y, = 1 — a,z
is just the sequence of polynomials @*(z) (see [7; 2, Chap. 8]. Therefore,
the Kolmogorov-Szegé condition is violated if Zia,,{z = o,

ExampLe 9. Following [2] let a,, = a, 0 # |al < 1. Then (17) takes the
form

Yniz— (1 +2)y,., +2(1 = lal®)y, = 0. (18)

640/79/1-10
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Therefore,
Ty Xj = X
¥ (z) = ——— - (1 +a):z , (19)
A] - Az )‘1 — A,

where A, A, are roots of the characteristic equation
A—(1+z)A+z(1-lal®)=0.
Obviously, A, , = 3(1 + z + m), where
A(z) =1-2(1 - 2[al*)z + 22

If x is real then A(x) > 0. In this case one can choose the positive branch
of yA(x). Then A(x) > [A,(x)| for x > ~1 and it follows from (19)
that, asymptotically,

Mx) - (1 +a)x

\/z‘—(x—) Aj(x) (20)

1

@} (x) =

as n — o. For x > 0 we can insert x~! instead of x. Since x%A(x~!) =
A(x) and xA(x~') = A,(x) we obtain from (20)

®,(x) = Mx) — {1 +a) Xi(x) (21)
" VA(x) .

Note also that by (18) all ¢*(z) (n = 1) have the same leading coeffi-
cient, namely (—a).
Now we denote by 1, the measure » with n_=n,d_=n — 1 and

P,(z) + P7(2)
1—-a

DTn(z) =

which corresponds to 8, = 1 in (16). From (20) and (21) we obtain
2A0,(x) — (1 + a)(1 +x)

P = T VAt

The coefficient of this asymptotic relation is not zero if x # 1. Since
Afx) > 1 for x > 0 we obtain D, (x) > o as n—>xand x>0, x # 1,

moreover
lim /D, (x) = A,(x) > L.

Therefore, the conclusion of Lemma 6 is not valid now.

Ai(x).
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